skip to main content


Search for: All records

Creators/Authors contains: "Uta, Alexandru"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With the ever-increasing dataset sizes, several file formats such as Parquet, ORC, and Avro have been developed to store data efficiently, save the network, and interconnect bandwidth at the price of additional CPU utilization. However, with the advent of networks supporting 25-100 Gb/s and storage devices delivering 1,000,000 reqs/sec, the CPU has become the bottleneck trying to keep up feeding data in and out of these fast devices. The result is that data access libraries executed on single clients are often CPU-bound and cannot utilize the scale-out benefits of distributed storage systems. One attractive solution to this problem is to offload data-reducing processing and filtering tasks to the storage layer. However, modifying legacy storage systems to support compute offloading is often tedious and requires an extensive understanding of the system internals. Previous approaches re-implemented functionality of data processing frameworks and access libraries for a particular storage system, a duplication of effort that might have to be repeated for different storage systems. This paper introduces a new design paradigm that allows extending programmable object storage systems to embed existing, widely used data processing frameworks and access libraries into the storage layer with no modifications. In this approach, data processing frameworks and access libraries can evolve independently from storage systems while leveraging distributed storage systems’ scale-out and availability properties. We present Skyhook, an example implementation of our design paradigm using Ceph, Apache Arrow, and Parquet. We provide a brief performance evaluation of Skyhook and discuss key results. 
    more » « less
  2. All computing infrastructure suffers from performance variability, be it bare-metal or virtualized. This phenomenon originates from many sources: some transient, such as noisy neighbors, and others more permanent but sudden, such as changes or wear in hardware, changes in the underlying hypervisor stack, or even undocumented interactions between the policies of the computing resource provider and the active workloads. Thus, performance measurements obtained on clouds, HPC facilities, and, more generally, datacenter environments are almost guaranteed to exhibit performance regimes that evolve over time, which leads to undesirable nonstationarities in application performance. In this paper, we present our analysis of performance of the bare-metal hardware available on the CloudLab testbed where we focus on quantifying the evolving performance regimes using changepoint detection. We describe our findings, backed by a dataset with nearly 6.9M benchmark results collected from over 1600 machines over a period of 2 years and 9 months. These findings yield a comprehensive characterization of real-world performance variability patterns in one computing facility, a methodology for studying such patterns on other infrastructures, and contribute to a better understanding of performance variability in general. 
    more » « less
  3. Empirical performance measurements of computer systems almost always exhibit variability and anomalies. Run-to-run and server-to-server variations are common for CPU, memory, disk, and network performance characteristics. In our previous work, we focused on taming performance variability for memory, disk, and network and established an interactive analysis service at: https://confirm.fyi/ to help users of the CloudLab testbed better plan and conduct their experiments. In this paper, we describe our analysis of CPU variability based on over 1.3M performance measurements from nearly 1,800 servers and present our initial findings. The focus of this work is on capturing hardware variability, which can make repeatable experiments more difficult and can impact conclusions; it it this important for systems researchers to understand. (We note that, though we do not study it in this work, in the cloud, multi-tenancy and resource sharing an exacerbate the problem.) Variability also inevitably impacts performance and operation of middleware and high-level applications, contributing to the straggler problems in many domains, including HPC, Big Data, and Machine Learning, and on many types of cyberinfrastructures. We analyze the data from the CloudLab servers allocated in an exclusive fashion, with no virtualization. While our analysis focuses on the testbed that aims to promote reproducible research, we believe our approach and the findings can be of value to people who manage, analyze, and utilize shared computing resources in supercomputers, clouds, and datacenters. 
    more » « less
  4. null (Ed.)
  5. Performance variability has been acknowledged as a problem for over a decade by cloud practitioners and performance engineers. Yet, our survey of top systems conferences reveals that the research community regularly disregards variability when running experiments in the cloud. Focusing on networks, we assess the impact of variability on cloud-based big-data workloads by gathering traces from mainstream commercial clouds and private research clouds. Our data collection consists of millions of datapoints gathered while transferring over 9 petabytes of data. We characterize the network variability present in our data and show that, even though commercial cloud providers implement mechanisms for quality-of-service enforcement, variability still occurs, and is even exacerbated by such mechanisms and service provider policies. We show how big-data workloads suffer from significant slowdowns and lack predictability and replicability, even when state-of-the-art experimentation techniques are used. We provide guidelines for practitioners to reduce the volatility of big data performance, making experiments more repeatable. 
    more » « less
    Free, publicly-accessible full text available February 1, 2030